If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=-4.9Y^2+30Y-40
We move all terms to the left:
-(-4.9Y^2+30Y-40)=0
We get rid of parentheses
4.9Y^2-30Y+40=0
a = 4.9; b = -30; c = +40;
Δ = b2-4ac
Δ = -302-4·4.9·40
Δ = 116
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{116}=\sqrt{4*29}=\sqrt{4}*\sqrt{29}=2\sqrt{29}$$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-30)-2\sqrt{29}}{2*4.9}=\frac{30-2\sqrt{29}}{9.8} $$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-30)+2\sqrt{29}}{2*4.9}=\frac{30+2\sqrt{29}}{9.8} $
| 50.25x=4.5+5.75 | | (x+4)/(3)=10 | | 7(2x–5)=63 | | G(4)=1/2x-3 | | 2a/7=8 | | Y=4x^2+16x-1 | | 23p-4=10 | | 6.8x=6.8x= −3.9−(−8.9x−1)−2x−3.9−(−8.9x−1)−2x | | 3k^2-12k+5=0 | | 3a-6=87 | | (3x-5)+(6x)=180 | | 3s²(s-2)=12s | | (p)/(6)=(p+3)/(8) | | -10×+8y=10 | | g(×)=ײ+3 | | 2(2x-7)=16-2x | | 4+9d=16 | | x-5=8x-3x | | -1(2x+3)-2(x-1)=0 | | x2+7x+10=0* | | 2x+9=7x+24=180 | | 75-3.5x-4x+4x=6 | | 68+2x=70+1.5x | | 68+2x=70+1.5x. | | −(2x−4)=-12x-6 | | 9x+21=75 | | | 12x+4|=9 | | 7a+9=54 | | 5x^2+17=37 | | 2x+5=×-15 | | 2(x+6)-(2x-12)=0 | | 12x=84,x=7 |